Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
نویسندگان
چکیده
Deep neural networks have become the state-of-the-art models in numerous machine learning tasks. However, general guidance to network architecture design is still missing. In our work, we bridge deep neural network design with numerical differential equations. We show that many effective networks, such as ResNet, PolyNet, FractalNet and RevNet, can be interpreted as different numerical discretizations of differential equations. This finding brings us a brand new perspective on the design of effective deep architectures. We can take advantage of the rich knowledge in numerical analysis to guide us in designing new and potentially more effective deep networks. As an example, we propose a linear multi-step architecture (LM-architecture) which is inspired by the linear multistep method solving ordinary differential equations. The LM-architecture is an effective structure that can be used on any ResNet-like networks. In particular, we demonstrate that LM-ResNet and LM-ResNeXt (i.e. the networks obtained by applying the LM-architecture on ResNet and ResNeXt respectively) can achieve noticeably higher accuracy than ResNet and ResNeXt on both CIFAR and ImageNet with comparable numbers of trainable parameters. In particular, on both CIFAR and ImageNet, LM-ResNet/LM-ResNeXt can significantly compress (> 50%) the original networks while maintaining a similar performance. This can be explained mathematically using the concept of modified equation from numerical analysis. Last but not least, we also establish a connection between stochastic control and noise injection in the training process which helps to improve generalization of the networks. Furthermore, by relating stochastic training strategy with stochastic dynamic system, we can easily apply stochastic training to the networks with the LM-architecture. As an example, we introduced stochastic depth to LM-ResNet and achieve significant improvement over the original LM-ResNet on CIFAR10.
منابع مشابه
Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
Deep neural networks have become the state-of-the-art models in numerous machine learning tasks. However, general guidance to network architecture design is still missing. In our work, we bridge deep neural network design with numerical differential equations. We show that many effective networks, such as ResNet, PolyNet, FractalNet and RevNet, can be interpreted as different numerical discreti...
متن کاملAPPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملNumerical solution of hybrid fuzzy differential equations by fuzzy neural network
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.10121 شماره
صفحات -
تاریخ انتشار 2017